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1|Introduction 

1.1|Overview of Federated Learning 

Federated Learning (FL) is a decentralized machine learning paradigm that allows multiple devices or 

institutions to collaboratively train a global model without sharing raw data. Unlike traditional machine 

learning, where data is centralized on a single server, FL enables participants to train models locally and only 

share model updates, ensuring privacy and data security [1]. 

This approach has gained traction in fields like healthcare, finance, and edge computing, where privacy 

concerns and data regulations (e.g., GDPR, HIPAA) limit data sharing [2]. For example, hospitals can 

collaboratively build diagnostic models without exposing patient records. 
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Abstract 

This study compares three Federated Learning (FL) algorithms—FedAvg, FedProx, and MOON—by evaluating 

their performance in both IID and non-IID settings. We found that FedAvg performs best in IID scenarios, offering 

quick convergence and high accuracy. However, in non-IID settings, MOON stood out as the top performer, thanks 

to its contrastive learning method, providing better stability and accuracy across heterogeneous data. FedProx showed 

improvements over FedAvg in handling non-IID data but was less effective than MOON. Our findings suggest that 

for environments with IID data, FedAvg is ideal, while MOON is more suitable for non-IID cases. We also highlight 

the need for further research into personalized FL, regularization techniques, and the integration of multimodal data. 
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  1.2|Importance of FL in Distributed Machine Learning and Privacy 

The significance of FL lies in its ability to balance privacy with collaborative learning. By keeping data localized 

and sharing only aggregated model updates, FL minimizes the risk of data breaches and ensures compliance 

with privacy regulations [3]. 

However, FL introduces new challenges, particularly when client data is non-independent and Identically 

Distributed (Non-IID). Real-world datasets often vary across users due to demographic differences, user 

behavior, or regional variations. This data heterogeneity leads to model bias, slower convergence, and 

degraded performance [4]. 

1.3|Motivation for Reviewing and Comparing FL Algorithms 

To tackle the challenges posed by non-IID data, researchers have proposed several state-of-the-art FL 

algorithms. Federated Averaging (FedAvg), the baseline FL algorithm, averages model updates from clients. 

Although efficient, it faces difficulties when dealing with non-IID data, leading to inconsistent local updates 

[1], [3]. FedProx, an enhancement of FedAvg, incorporates a proximal term to prevent local updates from 

deviating too far from the global model, which helps improve convergence in non-IID scenarios [3]. MOON 

(Model contrastive FL) represents a more advanced approach that uses contrastive loss to align local and 

global models, ensuring stability and faster convergence, particularly in non-IID environments [5]. While 

these algorithms are designed to address non-IID challenges, there is no clear consensus on which one 

performs best under varying conditions [4], [6]. This uncertainty highlights the need for a comprehensive 

comparison of these algorithms. 

1.4|Research Objectives 

The primary goal of this survey is to analyze and compare the performance of FedAvg, FedProx, and MOON 

under both IID and non-IID settings. Using the MNIST dataset as a benchmark, this paper aims to: 

I. Evaluate performance: Compare accuracy, convergence speed, and communication efficiency across 

different FL algorithms. 

II. Assess robustness: Examine how each algorithm handles data heterogeneity, including label distribution 

skew, feature imbalance, and quantity variations [3], [5]. 

III. Identify trade-offs: Highlight the strengths, weaknesses, and computational costs associated with each 

approach, providing insights for future FL deployments. 

2|Background and Preliminaries 

Understanding FL and its challenges is crucial for evaluating how different algorithms, like FedAvg, FedProx, 

and MOON, address non-IID data issues. This section provides an overview of FL fundamentals, the impact 

of data heterogeneity, and the mathematical formulation behind distributed learning. 

2.1|Federated Learning Basics 

FL is a decentralized machine learning paradigm that enables multiple clients—such as mobile devices, 

hospitals, or financial institutions—to collaboratively train a shared global model without sharing raw data. 

Unlike traditional centralized learning, where all data is transferred to a central server for training, FL keeps 

data local, preserving privacy and reducing the risk of data breaches [1]. 

2.1.1|Centralized vs. decentralized learning 

In centralized learning, a server collects data from multiple sources, consolidates it into a single dataset, and 

trains a model. While effective, this approach raises significant privacy and security concerns, especially when 

dealing with sensitive information like medical records or financial transactions [3]. 



 Asl Nemati et al. | Trans. Soft. Comput. 1(1) (2025) 27-35 

 

29

 

   In contrast, decentralized FL trains models locally on client devices. Each client trains its model using local 

data and sends only the model updates (Gradients or parameters) to a central server, which aggregates them 

to update the global model. This approach not only enhances privacy but also reduces the need for large-scale 

data transfers, making it more efficient for distributed systems [4]. 

2.1.2|Privacy Concerns and Communication Efficiency 

While FL improves privacy by keeping data local, it introduces new risks. Attackers can infer sensitive 

information from model updates, even if raw data is not shared. Methods like differential privacy and Secure 

Multi-Party Computation (SMPC) can mitigate these risks, but often come at the cost of increased 

computational overhead [2]. 

Communication efficiency is another challenge. In FL, clients must frequently exchange model updates with 

the server. Exchanging server updates can strain network resources, especially in environments with limited 

bandwidth or unstable connections [5]. Techniques like model compression, quantization, and sparse updates 

can help reduce communication costs while maintaining model performance [6]. 

2.1.3|Federated Averaging as a Baseline 

The FedAvg algorithm, introduced by [1], is the most widely used baseline in FL. It works as follows: 

I. Each client trains a local model using its data for multiple epochs. 

II. Clients send their updated model parameters to the server. 

III. The server aggregates these updates by averaging the parameters and updates the global model. 

Mathematically, the global model w at each round t is updated as 

where wi 
t represents the local model of client i, ni is the size of the dataset for client i, and n is the total 

number of samples across all clients [3]. 

While FedAvg performs well in IID settings, it struggles with non-IID data because clients' local updates are 

biased by their unique data distributions, causing the global model to drift away from an optimal solution [5]. 

2.2|Non-IID Data Challenges in Federated Learning 

One of the biggest challenges in FL is dealing with non-IID data, where client datasets differ in terms of class 

distribution, feature space, and quantity. This statistical heterogeneity causes model divergence, slower 

convergence, and reduced accuracy [3], [4]. 

The key non-IID challenges include: 

2.2.1|Statistical heterogeneity: Imbalanced class distributions 

In real-world applications, clients often have skewed class distributions. For example, a smartphone used by 

a teenager may generate app usage data that differs from that of an elderly user. This label distribution skew 

leads to biased model updates, making it hard for the global model to generalize across all clients [3]. 

 FedProx addresses this issue by adding a proximal term to the loss function, preventing local models from 

drifting too far from the global model [3]. 

2.2.2|System heterogeneity: Different device capabilities 

FL operates across devices with varying computational power, memory, and battery life. High-performance 

servers can process complex models, while low-power IoT devices may struggle with the same workload [2]. 

wt+1 = ∑  

n

i=1

ni

n
wi 

t,  
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   To address this, some FL frameworks, like MOON, adjust model complexity based on device capacity, 

ensuring that weaker devices can still participate effectively [5]. 

2.2.3|Communication constraints: Bandwidth and network fluctuations 

Efficient communication is critical in FL, as clients frequently exchange model updates with the server. 

However, limited bandwidth, network congestion, and intermittent connectivity can delay updates and slow 

down convergence [4]. 

Approaches like compressed updates, sparsification, and quantization reduce the size of transmitted data 

while maintaining model performance [6]. 

2.3|Mathematical Formulation 

The goal of FL is to minimize a global loss function across distributed clients while accounting for non-IID 

data. Suppose there are N clients, each with a local dataset Di, and the objective is to minimize the following 

global loss function: 

Where: 

I. F(w) is the global loss function. 

II. Fi(w) represents the local loss function of client i. 

III. Di is the size of the dataset for client i. 

IV. D is the total number of data points across all clients. 

2.3.1|Data Distribution Differences in IID vs. non-IID settings 

In IID settings, each client’s dataset follows the same underlying distribution: 

However, in non-IID settings, client data distributions differ: 

This distribution mismatch causes local models to diverge, making it challenging to aggregate them into a 

cohesive global model [3], [5]. 

2.4|Summary 

In summary, while FL offers significant advantages for privacy-preserving distributed learning, it faces critical 

challenges when client data is non-IID. The FedAvg algorithm serves as a baseline but struggles with statistical 

heterogeneity, system constraints, and communication bottlenecks. Advanced approaches like FedProx and 

MOON attempt to mitigate these challenges by regularizing updates, personalizing models, and optimizing 

communication [4], [6]. 

 The following section will delve deeper into how these algorithms perform under different non-IID 

conditions, comparing their strengths, limitations, and trade-offs. 

min F(W) = ∑  

N

i=1

|Di|

D
Fi(W),  

Pi(X, Y) = Pj(X, Y) , for all i,j.  

Pi(X, Y)  ≠ Pj(X, Y).  
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  3|Related Work 

3.1|Comparison of Federated Learning Algorithms 

FL has gained significant attention due to its ability to train models across decentralized devices while 

preserving data privacy. One of the most widely used FL algorithms is FedAvg, introduced by McMahan et 

al. [7]. In this approach, each client trains a model locally and sends updates to the server, where they are 

averaged to form a global model. FedAvg works well in IID settings, where data across clients is similar. 

However, when data is non-IID, meaning it is distributed unevenly across clients, FedAvg experiences slower 

convergence and reduced accuracy. To overcome these challenges, FedProx was introduced by Li et al. [6]. 

FedProx includes a proximal regularization term in the optimization process to reduce discrepancies between 

local models and the global model. This adjustment allows FedProx to perform better in non-IID scenarios, 

achieving faster convergence and more accurate models compared to FedAvg. MOON (Model-contrastive 

learning for federated optimization), proposed by Li et al. [8], takes a different approach by incorporating 

contrastive learning, which helps reduce the discrepancies between client models. MOON has been shown 

to outperform both FedAvg and FedProx in non-IID environments, providing faster convergence and better 

generalization. 

3.2|Benchmarks and Datasets Used in Federated Learning Research 

To evaluate the performance of FL algorithms, various datasets are commonly used. MNIST, FEMNIST, 

and CIFAR-10 are some of the most widely adopted benchmarks in FL research. MNIST, a classic dataset of 

handwritten digits, is often used in experiments to compare FedAvg, FedProx, and MOON, especially in 

both IID and non-IID settings [6], [9]. FEMNIST, an extension of MNIST with handwritten characters from 

a wider range of people, is used to test FL algorithms in more complex non-IID environments, where data 

distributions are skewed and imbalanced [10]. CIFAR-10, a dataset containing 60,000 color images across 10 

classes, is more complex than MNIST and is often used to evaluate the scalability and efficiency of FL 

algorithms, particularly in image classification tasks [11]. These datasets allow researchers to test the 

generalization ability of FL algorithms across various types of data and client distributions. 

3.3|Performance of FedAvg, FedProx, and MOON in Different Settings 

The performance of FL algorithms varies between IID and non-IID settings. FedAvg works well in IID 

scenarios, where data is evenly distributed, but struggles with convergence in non-IID environments. 

FedProx, with its proximal regularization, is more robust in non-IID settings, converging faster and achieving 

higher accuracy. MOON, using contrastive learning, outperforms both FedAvg and FedProx in non-IID 

environments, offering the fastest convergence and best accuracy, making it the most robust for handling 

data heterogeneity. 

3.4|Discussion on Algorithm Performance in IID vs. Non-IID Settings 

The comparison of FedAvg, FedProx, and MOON highlights the primary challenge of FL: managing non-

IID data. FedAvg is effective when the data across clients is similar (IID), but its performance drops 

significantly when the data becomes more heterogeneous (Non-IID). FedProx and MOON offer more robust 

solutions for non-IID data, with FedProx being particularly suitable for scenarios where client data 

distributions are imbalanced but still share some similarity. However, MOON stands out as the best 

performer in the most challenging non-IID environments, providing faster convergence and better 

generalization due to its innovative contrastive learning approach. 

4|Methodology 

This experiment uses the MNIST dataset, consisting of 60,000 training and 10,000 test images, to evaluate 

FL algorithms (FedAvg, FedProx, and MOON) under both IID and non-IID conditions. In the IID setup, 
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  the dataset is evenly distributed across clients, while in the non-IID setup, the data is unevenly distributed 

among clients. The experiments are run using the FL-bench simulator, with support for both serial and parallel 

execution and GPU acceleration for faster training. 

The evaluation metrics include accuracy, loss, convergence rate, and communication efficiency. Each client 

trains for 20 local epochs and sends updates to the server, which aggregates them and broadcasts the updated 

global model. The process repeats for 100 global rounds. 

For hyperparameters, FedAvg uses a learning rate of 0.01, an SGD optimizer, a batch size of 32, and 20 local 

epochs, with a total of 50 global epochs. FedProx follows similar settings but includes a proximal 

regularization term (μ) of 0.1. MOON uses a learning rate of 0.01, a Tau value of 0.5, a Mu of 5, 20 local 

epochs, and 100 global epochs. The experiment involves 50 clients, each training for 20 local epochs, with 

global model updates over 50 global rounds. The data distribution varies between the IID and non-IID setups. 

5|Experiments and Results 

In this section, we present the experimental results comparing the performance of the FedAvg, FedProx, and 

MOON algorithms in both IID and non-IID settings. We analyze the algorithms' convergence behavior, 

accuracy, and loss, and provide insights into the factors influencing their performance. The experiments were 

conducted on the MNIST dataset. 

5.1|IID Results 

In the IID scenario, where data is evenly distributed across all clients, all three algorithms—FedAvg, FedProx, 

and MOON—show impressive performance. The training curves for all three algorithms indicate rapid 

convergence, with the accuracy reaching nearly 100% within the initial communication rounds. 

I. FedAvg: The FedAvg algorithm achieves a quick and smooth increase in accuracy, with both the validation 

and test accuracies closely following each other. The model stabilizes early, with minimal fluctuations. This 

result is expected, as FedAvg is well-suited for IID settings, where data is uniformly distributed across clients. 

The lack of significant fluctuations indicates that FedAvg performs efficiently in this scenario. 

II. FedProx: FedProx shows similar performance to FedAvg, with a rapid rise in accuracy. However, the test 

accuracy curve is slightly more stable compared to FedAvg, suggesting that the regularization term in 

FedProx helps maintain model consistency even when minor variations occur in the local updates. This 

behavior demonstrates FedProx’s ability to slightly reduce fluctuations in the accuracy. 

III. MOON: MOON performs exceptionally well in IID settings, with a smooth and fast convergence to near 

100% accuracy. The accuracy curves for both the validation and test sets show minimal fluctuation, indicating 

that the contrastive learning technique used in MOON effectively handles model alignment. The consistent 

performance in both validation and test accuracy reinforces MOON’s robustness in IID settings. 

a.                                                           b.                                                          c. 

Fig. 1. IID scenario; a. FedAvg under IID scenario, b. FedProx under the IID scenario, c. 

moon under the IID scenario. 
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  5.2|Non-IID Results 

In the non-IID scenario, where data is distributed unevenly across clients, we observe more significant 

differences in the performance of the algorithms. 

I. FedAvg: FedAvg shows slower convergence in the non-IID scenario compared to the IID setting. The 

accuracy fluctuates significantly, especially in the test set, reflecting the algorithm's difficulty in dealing with 

the non-IID data distribution. These fluctuations occur because FedAvg does not have mechanisms to 

address local data imbalances, causing inconsistencies between the local models and the global model. 

II. FedProx: FedProx performs better than FedAvg in non-IID settings, showing smoother convergence and 

fewer fluctuations in accuracy. The addition of the proximal regularization term helps reduce the 

discrepancies between local models and the global model. FedProx achieves more stable performance, but 

still faces some fluctuations in accuracy, especially during the early communication rounds. 

III. MOON: MOON exhibits the best performance in the non-IID scenario. The contrastive learning technique 

significantly reduces fluctuations in accuracy, resulting in more stable convergence compared to both FedAvg 

and FedProx. MOON achieves higher accuracy with minimal fluctuation, demonstrating that its approach 

effectively mitigates the challenges posed by non-IID data. 

a.                                                              b.                                                         c. 

Fig. 2. Non-IID scenario; a. FedAvg under non-IID scenario, b. FedProx under non-IID scenario, c. 

moon under non-IID scenario. 

 

5.3|Class Distribution in IID and Non-IID Settings 

In this section, we compare the class distribution in IID and non-IID settings. In the IID setup, the data is 

evenly distributed across clients, ensuring a balanced representation of all classes, which facilitates easier 

training and better algorithm performance. In contrast, the non-IID setup has uneven data distribution, with 

some clients receiving only a subset of the classes, creating imbalance and challenges for the algorithms. This 

uneven distribution can slow convergence and affect model performance, as the algorithms struggle to 

generalize across diverse data distributions. 

a.                                                                        b. 

Fig. 3. The class distribution in IID and non-IID settings; a. class distribution in IID, b. 

class distribution in non-IID. 
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  6|Discussion 

The performance differences between FedAvg, FedProx, and MOON in IID and non-IID settings stem from 

several factors. In IID scenarios, all algorithms perform well, with FedAvg showing the quickest convergence. 

However, in non-IID environments, FedAvg struggles due to imbalanced data, while FedProx and MOON 

better handle local data variations, with MOON providing the most stable performance. Additionally, non-

IID setups increase communication costs, as frequent updates are needed to address discrepancies between 

local and global models. Both FedProx and MOON manage this more efficiently, with MOON offering the 

best balance of communication efficiency and performance. In terms of convergence, FedProx and MOON 

demonstrate more stable and faster convergence in non-IID settings, with MOON excelling in minimizing 

model divergence. 

7|Conclusion 

This study compared the performance of three FL algorithms—FedAvg, FedProx, and MOON—across both 

IID and non-IID settings. In IID scenarios, where data is evenly distributed, FedAvg showed the fastest 

convergence and high accuracy, but MOON and FedProx were more stable, with MOON ultimately 

achieving the best performance. In non-IID settings, FedAvg faced slower convergence and instability, while 

FedProx, through regularization, improved handling of data heterogeneity. MOON outperformed both 

FedAvg and FedProx, offering superior convergence and accuracy, thanks to its contrastive learning 

approach. 

For IID environments, FedAvg is the most efficient, but for non-IID cases, MOON is recommended due to 

its robustness and generalization. FedProx is also a viable option for moderate data heterogeneity. Future 

research in FL should focus on enhancing regularization techniques, exploring personalized learning for 

specific client needs, and improving communication efficiency in large-scale systems. Additionally, 

multimodal FL, integrating diverse data types, could enhance model robustness and adaptability. In 

conclusion, while FedAvg is best for IID, MOON stands out for its effectiveness in non-IID scenarios, and 

advancements in FL will further broaden its real-world applications. 

In conclusion, FedAvg is well-suited for IID environments, while FedProx and MOON excel in non-IID 

settings, with MOON providing the most effective solution for handling data heterogeneity. Further 

advancements in FL, especially in terms of personalization and communication efficiency, will expand its 

applicability to real-world scenarios. 
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