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1|Introduction    

The rapid rise of the World Wide Web has led to an increase in the visibility of web traffic and delays in its 

access. One of the areas affected by this problem is database servers in systems with e-commerce applications. 

Database server cache performance is an essential issue in e-commerce systems. Managing the entry and exit 
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Abstract 

Due to the increasing performance between CPU and cache memory, the use of replacement algorithms is very 

important in various aspects of high-performance computing environments such as e-commerce systems, cache 

memory management in microprocessors, object management in operating systems, and iteration strategies in 

information distribution systems and etc. Database server cache performance is an important issue in e-commerce 

systems. Managing the entry and exit of cache objects with replacement algorithms can reduce the workload of the 

database server and improve server performance. The algorithms determine which objects remain in the cache 

memory and which ones go out to make room for new objects. In this way, the algorithms not only decrease user 

access time, but also enhance the performance of the system. Most of these algorithms are developed by the famous 

LRU and LFU schemes and can fix their flaws; but unlike them, they are difficult to implement. This research 

proposes a priority object replacement algorithm that is easy to implement. The algorithm, called  Priority Cache 

Object Replacement Algorithm (PCORA), is based on prioritizing cache memory objects according to three 

parameters. Experiments show that the proposed algorithm has a better hit ratio than other algorithms and can 

effectively improve cache memory performance.  
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  of cache objects can reduce the workload of the database server and improve server performance. One of the 

most effective techniques proposed to solve this problem is web caching. In order to effectively enhance the 

performance of the cache memory, two types of methods have been proposed: One is to increase the size of 

the cache memory, which is very expensive. The second method is to design a useful cache memory 

replacement algorithm. Caching is a popular performance optimization method that is widely used in web 

storage. If there is not enough cache memory, the load on the servers will increase as the number of users 

and their requests increases. The insufficient cache memory can cause network traffic problems and network 

delay [1].  

For cache memory, there are three different patterns of web cache memory: Client-side cache memory, server-

side cache memory, and proxy cache memory. Client-side cache memory refers to cache memories on the 

user side that store web page addresses and other information to use to access servers. Server-side cache 

memory refers to creating a cache memory on the web server side. It aims to reduce the number of server 

requests, which can reduce server load. Proxy cache memory usually acts as the interface between the user's 

servers and the central server. When a user sends a request to a central server via a proxy server, the server 

sends the data to the user according to the main request path.  

During this procedure, the proxy server decides whether or not to save a copy in its cache memory, as this 

data may be requested in the future. Therefore, using an alternative algorithm for server-side cache memory 

and proxy server to reduce network delay is more important. Many factors affect the efficiency of cache 

memory, the most important of which are the frequency of access, the last access time, and the size of the 

cache memory object. For each factor, researchers have proposed appropriate algorithms. When the cache is 

full, they all have their own algorithm to choose which object to delete. The cache memory replacement 

policies are generally aimed at enhancing the cache memory hit rate. Hit rate is a standard for measuring the 

performance of web cache memory replacement algorithms. The higher the hit rate, the better the 

replacement algorithm [2].  

In this research, a cache memory replacement policy with a high hit rate and low delay, which is easy to 

implement, is proposed to improve cache memory performance. This algorithm, named Priority Cache Object 

Replacement Algorithm (PCORA), is based on prioritizing cache memory objects according to three 

parameters. PCORA, which has a priority model, takes advantage of existing cache memory replacement 

algorithms, which makes the proposed algorithm more accurate and reliable. 

The rest of the paper is organized as follows. In Section 2, a review of the past literature is done, and the 

strengths and weaknesses of each of them are described. Section 3 describes each part of the PCORA 

algorithm, including the data and its main and sub-functions, separately. In Section 4, the performance of the 

proposed algorithm is evaluated in terms of hit ratio and compared with other algorithms. Section 5 concludes 

the proposed algorithm and suggests future research. 

2|Literature Review 

In this section, famous algorithms affecting systems and other existing algorithms are reviewed, and their 

advantages and disadvantages are stated.  

When the cache memory is full and a new object needs to be stored, a replacement algorithm should be used 

to select which object must be deleted to make room for the new object [3]. Cache memory replacement 

algorithms select which data can stay in the cache memory. An effective cache memory replacement algorithm 

has fewer errors and can also improve cache memory hit and byte rates [4]. Many academic and industry 

researchers are trying to find an optimal cache memory replacement policy. According to Table 1, conventional 

cache memory replacement algorithms are mainly divided into five categories [2], [5]: 
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  Table 1. Five conventional cache memory replacement algorithms. 

 

In the recent LRU algorithm, time is the main factor. The basic idea of this algorithm is that if data is recently 

requested, it will be more likely to be requested in the future. When the cache memory is full, it deletes less 

recently mentioned objects. The advantage of this model is that it has a good performance and is very easy to 

implement on the client side. But this algorithm only considers the last visit and does not care about the 

number of visits to an object [1], [2]. In the LFU algorithm, researchers consider popularity or the number of 

visits to the object as the main factor. The basic idea is that the more data you refer to, the more likely you 

are to refer to it in the future. It is commonly used to store web URLs, and when the cache memory is full, it 

removes the web object with the least number of visits. The advantage is that it is also easy to implement and 

works well on the proxy side [6], [7].  

In a weight-based algorithm, researchers use weights to decide which object should be cleared from the cache 

memory. Weight is classified in descending order. Users can directly remove the object with the biggest weight 

[8]. FPRA is a modification of popular alternative algorithms such as LRU and LFU. This algorithm uses 

FCM to cluster pages based on three parameters. Clusters of higher freshness, higher frequency, and lower 

referral rate have higher priority [9]. Clustering allows pages that are more similar to each other to be in the 

same group [10].  

Arya et al. [11] have come up with a new concept for page replacement that is based on reading page blocks 

from secondary memory. Whenever there is an error on the page, instead of reading only one missing page, 

the property of the pages equal to the number of frames allocated to that process is restored. In this way, the 

number of page errors is minimized, which also increases the hit rate.  

In [12], a cache memory replacement policy based on the FHPA algorithm is proposed, which restricts the 

full use of device space with an edge. Considering the heat of the file, the possibility of re-accessing the file 

cache is evaluated. The cached file with the least chance of being re-accessed will be removed from the cache 

memory. In [13], a new cache memory replacement policy is proposed to enhance the last-level cache memory 

effectiveness of embedded processors. Unlike LRU, this algorithm uses the correlation of the distances among 

the tags in between the cache memory lines to improve accuracy.  

Shin et al. [14] presented a new cache memory management scheme specifically for rendering systems. Unlike 

public purpose computing systems, rendering systems display specific patterns of file access that result in 

Algorithm Brief description Advantages Disadvantages 

RAND A random number 
generator to identify an 
alternative object 

It is the simplest algorithm and 
easy to implement 

It is not considered a factor 
It has an unstable performance 
Its hit rate is low 

LRU The least-used items are 
deleted first 

It is easy to implement and has a 
low hit rate 

No factor other than the time 
factor is considered 
It contains the cache 
contamination 

LFU Objects of the least 
frequency are removed 
first 

It prevents cache memory 
contamination 

Only the frequency factor is 
considered, and other factors are 
ignored 
It is difficult to implement 

SIZE Large objects are removed 
first. 

It is easy to implement, preserves 
small objects first, and has a high 
cache hit rate. 

It first stores small web objects, 
even if they are not re-accessed 
It has a low byte hit rate 

GDSF Frequency and launch 
factors are combined, and 
the age factor is produced 
like the time factor. 

It covers the weakness of the size 
algorithm by deleting objects that 
are no longer accessible to users. 

Its computational cost is low, and 
it has a complex parameter setting 
It has a low byte hit rate 
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  significant disruption to the performance of the buffer cache memory system. To deal with this situation, 

different input and output sequences of rendered files are collected, and their access patterns are analyzed. 

The WRP algorithm has two major problems. The first problem of this algorithm occurs when the result of 

dividing two factors (Novelty and frequency) for one block is equal to another block. The second problem is 

that it only considers the time interval between the last two accesses and does not consider the previous 

accesses.  

In [15], these two problems and other minor problems are solved by introducing a new function. Anwar et 

al. [16] proposed a buffer storage replacement algorithm for flash-based storage devices. Being called the 

LBA, it takes into account the fact that flash memory has asymmetric reading and writing costs. In [17], the 

impact of the cost of the last-level cache memory in a hybrid memory system was mainly addressed. A cost 

cache memory replacement policy in shared level cache memory has been proposed to increase its memory 

performance. CACRP improves cache memory performance by three parameters. The WOLF-ARE 

algorithm counters network traffic and recognizes popular files. This algorithm considers the frequency and 

recent information of the files to determine the popularity of the content [18]. The CCF-LRU policy 

categorizes data sheets that have cold or hot attributes as well as clean or dirty properties. The replacement 

algorithm concept is to replace as many cold and clean data sheets as possible, especially those that have been 

referenced only once before switching hot pages [19], [20].  

Jiang and Zhang [21] proposed a cache memory algorithm for HetNets with SBSs, MBS, and D2D transfers. 

They mixed a cache strategy design as an integer linear programming problem to minimize system costs. The 

RCR algorithm considers the temporary location of traffic. If a cache memory error occurs and the current 

traffic location is close to the missing rule, a victim rule is replaced with the miss cache rule, and a high value 

is set for the missing rule to keep the rule in TCAM [22]. The basic idea of the CLOCK-DNV algorithm is 

to share all the free space in NVM and DRAM, and manage the DRAM space in a page granulation and the 

NVM space in a block granulation to use temporal and spatial locality [23]. PLRU and PLFU algorithms keep 

20% of the top popular movies of each video group in Memcached without choosing them as alternative 

candidates [24].  

Karami and Guerrero-Zapata [25] proposed an ANFIS-based cache memory replacement algorithm to reduce 

two general cache infection attacks: Incorrect location and location disruption in NDN. This algorithm is 

very effective in determining and reducing fake content. The AC-CLOCK screen replacement algorithm takes 

advantage of both DRAM and PCM algorithms. DRAM has an unlimited number of write cycles and shorter 

writing delays, and PCM has higher density and less static power [26]. WGDSF is based on a weight 

substitution algorithm that uses a new weight and cost strategy. In addition, it takes advantage of the existing 

cache memory replacement policy. WGDSF is a developed GDSF algorithm, and its implementation is based 

on the type of weight document and time based on weight frequency. The weight frequency-based time 

parameter is a keyword that indicates the popularity of the content, and also has a large number in the cache 

memory replacement process [27].  

LER focuses on the above writing error in STT-RAM cache memories that originated from transactions 0 to 

1. The basic idea is to place the input object in a cache memory line that has the least amount of error in the 

writing operation [28]. Motwani et al. [29] developed a new algorithm that enhances the performance of multi-

level cache memory. In the proposed algorithm, the reference value of an object depends on the freshness of 

the object in the cache memory, along with the novelty characteristics and frequency of the object. Nomura 

[30] proposed a way to delay the decision to freeze cache memory line layouts to implement the Stubborn 

strategy more effectively.  

Olanrewaju et al. [31] proposed the NB-AWRPDA smart web proxy memory approach, aiming to improve 

AWRP performance in terms of HR and BHR. By studying the various page replacement algorithms, it should 

be noted that the LRU algorithm has better results than many other policies, and it is possible to improve it 

[32]. The HCR algorithm selects and sacrifices a block that has the least probability of error and the minimum 

number of writes during the write operation from a set of blocks [33]. ICRA is a cache memory replacement 
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  policy combined with an indexing policy, and its main innovation is that when the document and page 

information are read for the first time, an index is created and the indexed data is simultaneously analyzed, 

sorted, and stored in the cache memory [34]. PR-LRU increases flash memory performance and reduces 

writing count. This algorithm divides the buffer into a list of victims, cold, hot, and LRUs. Pages from the 

cold or hot LRU list are placed in the victim LRU list. The victim LRU list prefers to replace clean pages with 

dirty ones [35].  

Chen et al. [36] proposed a lightweight chart transformation method that provides a custom cache for full 

use of chart-level data reuse. They also propose a mapping method that uses data parallelization and reuse to 

manage the input of different graphs effectively. The proposed method increases the memory cache efficiency 

of database servers for e-commerce applications by reducing server overload.  

In [37], the subject of identifying fake ideas in e-commerce businesses based on short-term memory is a 

repetitive deep learning neural network. The test was performed using the standard Yelp product review 

dataset. A linguistic query and word count dictionary were used to extract additional linguistic features from 

the review texts, which can help distinguish between real and fake comments. He and Lin [38] proposed a 

horizontal position design method in a single-user buffer auxiliary relay system and a 3D position design 

method in a multi-user buffer auxiliary relay system. The positioning system is designed to achieve the 

maximum system average and optimal speed. The proposed method significantly improves performance in 

convergence of power, speed, path losses, and energy costs, which can provide higher quality communication 

services to users in the system and better support for the widespread use of drones. 

In general, among the algorithms proposed to solve the problem of speed difference between CPU and cache, 

the optimal algorithm is the one that has good performance and is easy to implement. This research proposes 

a priority object replacement algorithm called PCORA, which is based on prioritizing cache memory objects 

according to three parameters. Experiments show that the proposed algorithm has a better hit rate than other 

algorithms and can effectively improve cache memory performance. 

3|Priority Cache Object Replacement Algorithm   

This section describes each part of the PCORA algorithm, including the data and its main and sub-functions, 

separately.  

PCORA is based on prioritizing cache memory objects and takes advantage of existing cache memory 

replacement algorithms, which makes it more reliable and more accurate. This method offers an approach 

that improves the hit rate of the cache memory and uses as much cache space as possible. Three cases happen 

when users request an object on the network. In the first case, if the requested object is in the cache memory, 

a hit occurs and the request is answered. In the second case, if the requested object is not in the cache memory 

and the cache memory capacity is sufficient, an error occurs, and that object will be added to the cache 

memory. In the third case, if the requested object is not in the cache memory and the cache capacity is not 

enough, an error occurs, and one of the cache memory objects must be removed to save the new object.  

In this case, PCORA uses the priority function to decide which object should be removed from the cache 

memory. The proposed replacement algorithm is a powerful tool that can increase server performance by 

considering three factors: Recency, frequency, and input order of each object. In fact, it runs similarly to the 

LRU and LFU algorithms and prioritizes each object according to both factors. The first factor, RecP (j), is a 

counter that indicates the freshness of object j in cache memory, and the second factor, FreP (j), is a counter 

that indicates the number of times object j is requested in cache memory. Based on the two factors, RecP (j) 

and FreP (j), the value of the object j priority function is calculated by Eq. (1). 

j

j

j

RecP
PerP .

FreP
=  (1) 
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  An object in the cache memory whose value of the priority function is higher than the others has the highest 

priority for deletion from the cache memory. The third factor, IOP(j), is the order in which object j enters 

the cache memory. When the new object j is placed in the cache memory, the priority function factors must 

be initially quantified. According to the above variables, PCORA is run based on the following five functions: 

The main function 

In the primary function, when object j is requested, one of the three main function modes of the proposed 

algorithm occurs. 

Algorithm 1. Main function. 

 

 

 

 

 

 

When the cache memory is referred to, the requested object j is not available in the cache memory, and the 

cache memory is not full, then a Miss occurs, and the requested object must be added to the cache memory. 

In such cases, Algorithm 2 is executed. 

Algorithm 2. Function 1. 

 

 

 

 

Set the RecP (j) factor to 1, FreP (j) to 1, and IOP (j) to the number of cache memory frames. FreP (j) is set 

to 1 because this means that object j is used once and IOP (j) is equal to the size of the cache memory because 

object j is stored as the last object in the cache memory, and it should be at the end of the queue like the 

FIFO algorithm. 

At each access to the cache memory, if the requested object j exists in the cache memory, a hit occurs and 

Algorithm 3 is executed: 

Algorithm 3. Function 2. 

 

 

 

 

When the cache memory is accessed, the requested object j is not in the cache memory, and the cache memory 

is full; in this case, the proposed algorithm updates the PreP value and selects the object with the maximum 

value of the priority function. If there is more than one object with the maximum value of the priority 

function, among the objects with the maximum value, an object with the minimum IOP value is selected to 

be deleted from the cache memory. The object with the maximum value of the priority function is searched 

top-down in the cache memory. Suppose an error occurs, the algorithm must select object t with the 

maximum value of the priority function and clear it from the cache memory; in such a case, Algorithm 3 will 

be executed. 

For each requested object j 
        If (the requested object j is not in the cache and the cache 
             is not full) 
             Call Function 1 
        elseif (the requested object j is in the cache) 
             Call Function 2 
        elseif (the requested object j is not in the cache and the 
                  cache is full) 
             Call Function 3 

For each frame in the cache memory 
      If (the frame i is empty) then 
          Place the new object in the frame i in the cache memory 
          RecP(j)=1 
          FreP(j)=1 
          IOP(j) = Cache Size 

 If the requested object j is in the cache 
For each object i in the cache 
If    i ≠ j 
                RecP(i) = RecP(i) +1 
 RecP(j) =1 and  FreP(j) = FreP(j) +1 
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  Algorithm 4. Function 3. 

 

 

 

 

 

 

 

 

 

 

One of the crucial concepts in replacement algorithms is their high overhead on systems. The proposed 

algorithm requires three counters to run, which adds memory overhead to the system: first, the algorithm 

requires a counter for RecP (j); second, a counter for FreP (j); and third, a counter for IOP (j). The last and 

maximum space required is the space for PreP (j), which is the value of the priority function of each object 

in the cache memory. Calculating the value of the priority function of each object reduces memory time and 

overhead only if the requested object j is not in the cache memory and the cache memory is full. The proposed 

algorithm for solving this problem considers PreP (j) as an integer to reduce the main costs. 

4|Performance Evaluation 

In this section, the performance of the proposed algorithm is evaluated experimentally. 

The proposed algorithm was simulated with the C# programming language and compared to six algorithms: 

LRU [1], [2], FIFO [32], WRP [8], LFU [6], [7], MFU [5], and DWRP [15]. The emulator is designed to execute 

some address sequences and save instructions for some real applications, and implement various replacement 

algorithms with different sizes of cache memory. The hit rate obtained depends on the locality of the cache 

memory access requests, the cache memory size, and the replacement algorithm. The modular design of the 

emulator allows easy simulation and optimization of the proposed algorithm. An address sequence is a list of 

thousands of memory addresses generated by a real program running on a processor. The addresses come 

from executing storage and code retrieval instructions. Some address sequences include instructions for both 

data and fetch addresses, but only one data cache memory is simulated; therefore, the sequences have only 

data addresses.  

To simulate the proposed algorithm, three sequences derived from the SPEC standards have been used. 

According to the sequences used, four cache memory sizes are considered, and the emulator is run to evaluate 

the performance of the proposed algorithm. The emulator runs with four different cache memory sizes for 

the NNgcc address sequence, and the results are compared to LRU, FIFO, WRP, LFU, MFU, and DWRP 

algorithms. Table 2 shows the hit rate values for the NNgcc address sequence simulated by LRU, FIFO, WRP, 

LFU, MFU, DWRP, and PCORA. When the cache memory size is 1K, the performance of the proposed 

algorithm is 64.046% better than DWRP. Moreover, when the cache memory size is 0.5K, the PCORA hit 

rate is 2.322% higher than the best algorithm, the LRU.  

In the worst case, when the cache memory size is 3K, it works 0.402% better than the LRU. As shown in Fig. 

1, PCORA performs significantly better than the other six algorithms. The hit rate obtained from PCORA 

with NNsixpack address sequence is above 60.24%; this rate is between 52.4% and 58.958% for LRU and 

between 9.234% and 26.656% for DWRP (See Table 3). As shown, as the cache memory size increases, the 

performance of the proposed algorithm increases. Fig. 2 shows the PCORA simulation results compared to 

Update the PreP 
 If there is only one maximum PreP 
 Remove the object with maximum PreP (object t) 
 Else 
 Remove the object with maximum PreP and 
 minimum IOP 
 For each object(i) in the cache 
 If    i ≠ j and i ≠ t 
  
RecP(i) = RecP(i) +1 
 RecP(t) = RecP(t) +1  and  FreP(t) = 1 
 RecP(j) =1 and  FreP(j) = FreP(j) +1 and  IOP(j) = Cache Size 
 For each object(i) in the cache 
 If    IOP(i) > IOP(t) 
                
IOP(i) =  IOP(i) – 1 
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  the other six algorithms, in which it performs better than the others. The third address sequence is NNswim. 

Fig. 3 shows the comparison and the result of this sequence. Table 4 shows the exact hit rates of seven 

algorithms with cache memory sizes of 0.5K, 1K, 2K, and 3K. The results show that the maximum hit rate is 

related to the LRU algorithm with the largest cache memory size, which is about 84.082%.  

The result for the proposed algorithm is expected to be at least equal to the highest value among the other 

six algorithms or more. The results in Table 4 showed that the maximum hit ratio for PCORA is about 

84.692%. The maximum hit ratio is 0.61% higher than the best hit rate for the LRU and 18.59% higher than 

the worst hit rate for the MFU. As explained, in all the sequences used, the hit rate of the proposed algorithm 

is always better than that of other alternative algorithms. The hit rate of the proposed algorithm is due to the 

priority factors considered in PCORA that never allow the result to be worse than the maximum hit rate of 

the other six alternative algorithms. 

 

Table 2. A comparison between the hit ratios of different algorithms with four cache sizes (NNgcc). 
 

 

 

 

 

 

 

 

Fig. 1. Performance of different algorithms with different cache sizes for NNgcc. 

 

Table 3. A comparison between the hit ratios of different algorithms with four cache sizes (NNsixpack). 

 

 

 

 

Cache Size PCORA% LRU% FIFO% WRP% LFU% MFU% DWRP% 

512 (0.5k) 65.864 63.542 61.684 59.042 34.642 46.952 11.93 

1024 (1k) 76.256 75.754 72.51 66.584 47.836 48.684 12.21 

2048 (2k) 80.618 79.784 77.668 74.442 64.268 50.758 33.948 

3072 (3k) 82.244 81.842 80.95 76.874 81.256 51.656 60.19 

Cache Size PCORA% LRU% FIFO% WRP% LFU% MFU% DWRP% 

512 (0.5k) 53.016 52.4 51.37 49.264 24.244 37.822 9.234 

1024 (1k) 55.466 54.92 54.206 53.686 33.564 38.98 9.552 

2048 (2k) 58.332 57.8 57.032 57.49 42.446 40.342 13.378 

3072 (3k) 60.24 58.958 58.4 59.458 55.808 41.124 26.656 
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Fig. 2. Performance of different algorithms with different cache sizes for NNsixpack. 

 

Table 4. A comparison between hit ratios of different algorithms with four cache sizes (NNswim). 

 

 

 

 

 

 

Fig. 3. Performance of different algorithms with different cache sizes for NNswim. 

 

The emulator also calculates the average hit rates of PCORA, LRU, FIFO, WRP, LFU, MFU, and DWRP 

algorithms with three address sequences. The results are presented in Tables 5-7. Fig. 4 shows that when the 

NNgcc address sequence is used, the average PCORA performance of 4 is better than that of other 

algorithms. Table 5 shows the average of the four hit rates of seven algorithms for the NNgcc address 

sequence. The performance of the proposed algorithm is 1.015% better than the best algorithm, LRU, and 

46.676% better than the worst algorithm, DWRP. As shown in Figs. 5 and 6, PCORA performs better than 

Cache Size  PCORA%  LRU% FIFO% WRP% LFU%  MFU% DWRP% 

512 (0.5k) 79.696 79.104 76.95 70.294 66.29 50.066 23.12 

1024 (1k) 80.974 80.52 79.098 74.34 72.822 53.868 33.036 

2048 (2k) 83.438 82.572 81.464 77.052 78.756 59.038 56.296 

3072 (3k) 84.692 84.082 83.24 79.638 83.128 66.102 78.652 
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  other algorithms; details of which are given in Tables 6 and 7 for the NNsixpack and NNswim address 

sequences, respectively. 
 

Table 5. A comparison between the average 4-hit ratios of different algorithms (NNgcc). 

 

 

Fig. 4. Average of four performances of different algorithms for NNgcc. 

 

Table 6. A comparison between the average 4-hit ratios of different algorithms (NNsixpack). 

 

 

Fig. 5. Average of four performances of different algorithms for NNsixpack. 

 

Table 7. A comparison between the average four-hit ratios of different algorithms (NNswim). 

 

 

PCORA% LRU% FIFO% WRP% LFU% MFU% DWRP% 

76.2455 75.2305 73.203 69.2355 57.0005 49.5125 29.5695 

PCORA% LRU% FIFO% WRP% LFU% MFU% DWRP% 

56.7635 56.0195 55.252 54.9745 39.0155 39.567 14.705 

 PCORA%  LRU% FIFO% WRP% LFU%  MFU% DWRP% 

82.2 81.5695 80.188 75.331 75.249 57.2685 47.776 
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Fig. 6. Average of four performances of different algorithms for NNswim. 
 

5|Conclusions  

In this research, a cache memory replacement algorithm was introduced, and a simulation of cache memory 

with a sequence of different addresses showed that it was a modification of popular replacement algorithms 

such as LRU and LFU. It indicated that objects with a smaller priority function value are more likely to be re-

requested than others. PCORA was simulated with three address sequences and compared to six popular 

algorithms. The PCORA simulation result with four different cache memory sizes showed better performance 

than the other six algorithms. The algorithm can be simulated with other address sequences and algorithms. 

It should be noted that other parameters and factors that indicate the properties of objects in the cache 

memory can be considered for the proposed algorithm. For example, considering the size and cost of each 

object in the cache memory makes PCORA perform better for applications such as web storage. The 

proposed design is also suitable for deciding on centralized cache memory, but not for a distributed solution. 
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